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Abstract
This paper proposes an integration of the situation calculus
with justification logic. Justification logic can be seen as a re-
finement of a modal logic of knowledge and belief to one in
which knowledge not only is something that holds in all pos-
sible worlds, but also is justified. The work is an extension
of that of Scherl and Levesque’s integration of the situation
calculus with a modal logic of knowledge. We show that the
solution developed here retains all of the desirable properties
of the earlier solution while incorporating the enhanced ex-
pressibility of having justifications.

Introduction
The situation calculus is at the core of one major approach
to cognitive robotics as it enables the representation and rea-
soning about the relationship between knowledge, percep-
tion, and action of an agent (Levesque and Lakemeyer 2007;
Reiter 2001). Axioms are used to specify the prerequisites
of actions as well as their effects, that is, the fluents that
they change (McCarthy 1968). By using successor state ax-
ioms (Reiter 1991), one can avoid the need to provide frame
axioms (McCarthy and Hayes 1969) to specify what partic-
ular actions do not change. This approach to dealing with
the frame problem and the resulting style of axiomatiza-
tion has proven useful as the foundation for the high-level
robot programming language GoLog (Levesque et al. 1997;
Giacomo, Lespérance, and Levesque 2000).

Knowledge and knowledge-producing actions have been
incorporated into the situation calculus (Moore 1985; Scherl
and Levesque 2003) by treating knowledge as a fluent that
can be affected by actions. Situations from the situation cal-
culus are identified with possible worlds from the seman-
tics of modal logics of knowledge. It has been shown that
knowledge-producing actions can be handled in a way that
avoids the frame problem: knowledge-producing actions do
not affect fluents other than the knowledge fluent, and that
actions that are not knowledge-producing only affect the
knowledge fluent as appropriate.

Within epistemology, the traditional analysis of knowl-
edge (dating back to Plato) is tripartite (Ichikawa and Steup
2014). An agent, S knows that p iff (1) p is true; (2) S be-
lieves that p; (3) S is justified in believing that p. There has
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been much discussion of counterexamples to the sufficiency
of this tripartite analysis (Lehrer 1990; Hendricks 2007;
Nozick 1981; Goldman 1967).

The possible-world analysis of knowledge only handles
the first two elements of the tripartite analysis; p is known if
it is believed (i.e., true in all accessible worlds) and if it is
true in the actual world. The component of justification has
recently been added with the development of justification
logic (Artemov 2008; 2001; Artemov and Fitting 2012). In
justification logic, there is in addition to formulas, a category
of terms called justifications. If t is a justification term and
X is a formula, then t:X is a formula which is read as “t is a
justification for X.” If the formula X is also true and believed
to be true, one can then write [t] :X for X is known with
justification t.

One of the examples used in the philosophical literature
mentioned above is the Red Barn Example (Luper 2012;
Artemov and Fitting 2012; Kripke 2011; Nozick 1981;
Dretske 2005). Henry is driving through the countryside and
perceptually identifies an object as a barn. Normally, one
would then say that Henry knows that it is a barn. But Henry
does not know there are expertly made papier-mâché barns.
Then we would not want to say that Henry knows it is a barn
unless he has some evidence against it being a papier-mâché
barn. But what if in the area where Henry is traveling, there
are no papier-mâché red barns. Then if Henry perceives a
red barn, he can then be said to know there is a red barn
and therefore a barn.

The apparent problem here is only a problem within a
modal logic of knowledge. There are two ways of the agent
“knowing” that a barn is red. One way is accidental. Henry
may have a barn perception, and then believe that the object
is a barn, but this is only accidentally true and therefore we
don’t want to say that Henry knows the object is a barn. If
Henry perceives that the object is a red barn, he is then jus-
tified in knowing that the object is a red barn and can then
infer correctly that the object is a barn. Modal logic does not
distinguish between these two ways of knowing/believing.

Within justification logic (Artemov 2008; Artemov and
Fitting 2012) there is no contradiction because the justifi-
cations differ. The modality of knowledge is an existential
assertion that there is a justification of a proposition. In one
case, there is a justification for the object being a barn via
a barn perception and in the other case a justification for it



being a barn via the red barn perception and propositional
reasoning. Later in this paper, the example will be worked
out in the situation calculus with justified knowledge.

Goldman (Goldman 1967) has argued that the tripartite
analysis of knowledge needs to be augmented with the re-
quirement that there is a causal chain from the truth of
the proposition known to the knowledge of the proposition.
Only in the case of knowledge via the red barn perception is
this condition met. The justification of knowing that the ob-
ject is a barn via the red barn perception can be seen as meet-
ing this further condition, while the justification via the barn
perception does not meet this condition (Artemov 2008;
Artemov and Fitting 2012).

The author is not aware of any previous work on integrat-
ing the situation calculus with a notion of justified knowl-
edge. There has been some work on integrating justifications
into dynamic epistemic logic (Baltag, Renne, and Smets
2012; Renne 2008)

The Situation Calculus and the Frame
Problem

The situation calculus (following the presentation in (Reiter
1991)) is a first-order language for representing dynamically
changing worlds in which all of the changes are the result of
named actions performed by some agent. Terms are used to
represent states of the world, i.e., situations. If α is an action
and s a situation, the result of performing α in s is repre-
sented by DO(α, s). The constant S0 is used to denote the
initial situation. Relations whose truth values vary from sit-
uation to situation, called fluents, are denoted by a predicate
symbol taking a situation term as the last argument. For ex-
ample, BROKEN (x, s) means that object x is broken in situ-
ation s. Functions whose denotations vary from situation to
situation are called functional fluents. They are denoted by
a function symbol with an extra argument taking a situation
term, as in PHONE-NUMBER(BILL,s).

It is assumed that the axiomatizer has provided for each
action α(~x), an action precondition axiom of the form1

given in ( 1), where πα(~x, s) is the formula for α(~x)’s ac-
tion preconditions.
Action Precondition Axiom

POSS(α(~x), s) ≡ πα(~x, s) (1)

An action precondition axiom for the action drop is given
below.

POSS(DROP(x), s) ≡ HOLDING(x, s) (2)

Furthermore, the axiomatizer has provided for each fluent
F , two general effect axioms of the form given in 3 and 4.
General Positive Effect Axiom for Fluent F

γ+F (a, s) → F(DO(a, s)) (3)

General Negative Effect Axiom for Fluent F

γ−F (a, s) → ¬F(DO(a, s)) (4)

1By convention, variables are indicated by lower-case letters
in italic font. When quantifiers are not indicated, the variables are
implicitly universally quantified.

Here γ+F (a, s) is a formula describing under what conditions
doing the action a in situation s leads the fluent F to be-
come true in the successor situation DO(a, s) and similarly
γ−F (a, s) is a formula describing the conditions under which
performing action a in situation s results in the fluent F be-
coming false in situation DO(a, s).

For example, ( 5) is a positive effect axiom for the fluent
BROKEN.

[(a = DROP(y) ∧ FRAGILE(y))
∨

(∃b a = EXPLODE(b) ∧ NEXTO(b, y, s))]
→ BROKEN(y, DO(a, s))

(5)

Sentence 6 is a negative effect axiom for BROKEN.

a = REPAIR(y)→ ¬BROKEN(y, DO(a, s)) (6)

It is also necessary to add frame axioms that specify when
fluents remain unchanged. The frame problem arises be-
cause the number of these frame axioms in the general case
is 2 × A × F , where A is the number of actions and F is
the number of fluents.

The approach to handling the frame problem (Reiter
1991; Pednault 1989; Schubert 1990) rests on a complete-
ness assumption. This assumption is that axioms (3) and (4)
characterize all the conditions under which action a can lead
to a fluent F’s becoming true (respectively, false) in the suc-
cessor situation. Therefore, if action a is possible and F’s
truth value changes from false to true as a result of doing a,
then γ+F (a, s) must be true and similarly for a change from
true to false (γ−F(a,s)

must be true). Additionally, unique
name axioms are added for actions and situations.

Reiter(1991) shows how to derive a set of successor state
axioms of the form given in 7 from the axioms (positive ef-
fect, negative effect and unique name) and the completeness
assumption.
Successor State Axiom

F(DO(a, s)) ≡ γ+F (a, s) ∨ (F(s) ∧ ¬γ−F (a, s)) (7)

Similar successor state axioms may be written for functional
fluents. A successor state axiom is needed for each fluent
F, and an action precondition axiom is needed for each ac-
tion a. The unique name axioms need not be explicitly rep-
resented as their effects can be compiled. Therefore only
F +A axioms are needed.

From (5) and (6), the following successor state axiom for
BROKEN is obtained.

BROKEN(y, DO(a, s)) ≡
(a = DROP(y) ∧ FRAGILE(y))∨

(∃b a = EXPLODE(b) ∧ NEXTO(b, y, s))∨
(BROKEN(y, s) ∧ a 6= REPAIR(y))

(8)

Now note for example that if ¬BROKEN(OBJ1, S0) holds,
then it also follows (given the unique name axioms) that
¬BROKEN(OBJ1, DO(DROP(OBJ2), S0)) holds as well.

Justification Logic
Justification logic adds to the machinery of propositional
logic (or quantifier free first-order logic) justification terms



that are built with justification variables x, y, z, . . . and jus-
tification constants a, b, c, . . . (using indices i = 1, 2, 3, . . .
whenever needed) using the operations ‘·’ and ‘+.’

The logic of justifications includes (in addition to the clas-
sical propositional axioms and the rule of Modus Ponens),
the following axioms

Application Axiom s : (F → G)→ (t :F → [s · t] :G),

Sum Axioms s :F → [s+ t] :F , s :F → [t+ s] :F

As needed, the following axioms are added.

Factivity t :F → F

Positive Introspection t :F →!t : (t :F )

Negative Introspection ¬t :F →?t : (¬t :F )

Factivity is used in all logics of knowledge. The Positive
Introspection operator ‘!’ is a proof checker, that given
t produces a justification !t of t : F . The negative in-
trospection operator ‘?’ verifies that a justification asser-
tion is false (Artemov 2008; Artemov and Fitting 2012;
Rubtsova 2006).

The standard semantics for justification logics (Fitting
2005) are called Fitting models or possible world jus-
tification models. This is a combination of the usual
Kripke/Hintikka possible world models with the necessary
features to handle justifications (Mkrtychev 1997). A model
for justification logic is a structureM = 〈G,R, E ,V〉. Here,
〈G,R〉 is a standard frame for modal logic with G being a set
of possible worlds andR being a relation on the elements of
G. The element V is a mapping from ground propositions to
G specifying which propositions are true in which worlds. In
the work here, we assume that a particular element of G is
specified as the actual world.

There is the evidence function E that maps justification
terms and formulas to sets of worlds. The idea is that if a
possible world Γ ∈ E(t,X) then t is relevant evidence for
X at world Γ.

Given a Fitting model M = 〈G,R, E ,V〉, the truth of a
formula X at a possible world Γ, i.e.,M,Γ |= X is given
as follows:

1. M,Γ |= P iff Γ ∈ V (P ) for P a propositional letter;

2. It is not the case thatM,Γ |=⊥;

3. M,Γ |= X → Y iff it is not the case that M,Γ |=
X orM,Γ |= Y ;

4. M,Γ |= (t :X) iff Γ ∈ E(t,X) and for every ∆ ∈
G,with ΓR∆, M,∆ |= X .

The last condition is the crucial one. It requires that for
something to be known, it both needs to be believed in the
sense that it is true in every accessible world and that t is
relevant evidence for x at that world. So, t:X holds iff X is
believable and t is relevant evidence for X .

The following conditions need to be placed on the Evi-
dence function:

• E(s,X → Y ) ∩ E(t,X) ⊆ E(s · t, Y )

• E(s,X) ∪ E(t,X) ⊆ E(s+ t,X)

These ensure that the application and sum axioms hold.
Additionally, the issue of a constant specification needs

to be mentioned. All axioms of propositional logic that are
used need to have justifications. Degrees of logical aware-
ness can be distinguished through the constant specification.
The constant specification (CS) is a set of justified formulas
(axioms of propositional logic). A modelM meets the con-
stant specification CS as long as the following condition is
met:

if c :X ∈ CS then E(c,X) = G
This ensures that the axiom is justified in all possible worlds.

Within justification logic, the derivation of a justified for-
mula such as s :F is the derivation of F being known. The
justifications distinguish different ways of knowing. Addi-
tionally, they represent how difficult it is to know something
and therefore a mechanism for addressing the logical omni-
science problem (Artemov and Kuznets 2006).

Representing Justified Knowledge in the
Situation Calculus

The approach we take to formalizing knowledge2 is to adapt
the semantics of justification logic described in the previous
section to the situation calculus. Following (Moore 1980;
Scherl and Levesque 2003), we think of there being a binary
accessibility relation over situations, where a situation s′ is
understood as being accessible from a situation s if as far as
the agent knows in situation s, he might be in situation s′.

To treat knowledge as a fluent, we introduce a binary rela-
tion K(s′, s), (representingR) read as “s′ is accessible from
s” and treat it the same way we would any other fluent. In
other words, from the point of view of the situation calculus,
the last argument to K is the official situation argument (ex-
pressing what is known in situation s), and the first argument
is just an auxiliary like the y in BROKEN(y, s).3

A fluent is introduced to represent the function E . This
is the relation E(t,X, s), where t is an evidence term, X is
a formula and s is a situation. There is no need to repre-
sent the evidence function as a function from justifications
and formulas to a set of situations. Since each fluent already
contains a situation argument, a relational fluent naturally
represents the justifications for formulas at that situation.

We can now introduce the notation Knows(t, P, s) (t is
justification for knowing P in situation s) as an abbreviation
for a formula that uses K and E. For example:

Knows(t,BROKEN(y), s)
def
= E(t,BROKEN(y), s)∧

∀s′ K(s′, s) → BROKEN(y, s′).

Note that this notation supplies the appropriate situation ar-
gument to the fluent on expansion.

Turning now to knowledge-producing actions imagine
a SENSEP action for a fluent P, such that after doing a
SENSEP, the truth value of P is known. We introduce the

2The situation calculus is a first-order formalism. But the
knowledge that we are modeling is a knowledge of propositional
or quantifier-free first-order formulas.

3Note that using this convention means that the arguments to K
are reversed from their normal modal logic use.



notation Kwhether(P, s) as an abbreviation for a formula
indicating that the truth value of a fluent P is known.

Kwhether(t, P, s) def
= Knows(t, P, s) ∨Knows(t,¬P, s),

It will follow from our specification in the next section that
∃t Kwhether(t, P, DO(SENSEP, s)) holds.

For clarity, a number of sorts4 are gradually introduced.
The sort SIT is used to distinguish between situations and
other objects. It is assumed that we have axioms asserting
that the initial situation S0 is of type SIT and that everything
of the form DO(a, s) is of type SIT. The letter s, possibly
with subscripts, is used to as indication that the variable is
of type SIT, without explicit use of the sort predicate.

Integrating Justified Knowledge and Action
The approach being developed here rests on the specification
of a successor state axiom for the K relation. This successor
state axiom will ensure that for all situations DO(a, s), the K
relation will be completely determined by the K relation at
s and the action a.

The successor state axiom for K will be developed in sev-
eral steps through an illustration of possible models for an
axiomatization. First, we illustrate the initial picture, with-
out any actions. Then, we add a successor state axiom for K
that works with ordinary non-knowledge-producing actions.
Finally, we add knowledge-producing actions.

The Initial Picture: Without Actions
For illustration, consider a model for an axiomatization of
the initial situation (without any actions) We can imagine
that the term S0 denotes the situation S1 (an object in a
model). Three situations (S1, S2 and S3) are accessible via
the K relation from S1. Proposition P is true in all of these
situations5, while proposition Q is true in S1 and S3, but is
false in S2. We also, have in S1 that t1 is evidence for P.
Hence,E(t1, P, S0) holds. Therefore6 the agent in S1 knows
P, but does not know Q. In other words, we have a model of
Knows(t1, P, S0) and ∀t¬Knows(t,Q, S0).

Setting up the Initial Picture Restrictions need to be
placed on the K relation so that it correctly models the acces-
sibility relation of a particular justification logic. The prob-
lem is to do this in a way that does not interfere with the
successor state axioms for K, which must completely spec-
ify the K relation for non-initial situations. The solution is to
axiomatize the restrictions for the initial situation and then
verify that the restrictions are then obeyed at all situations.

The sort INIT is used to restrict variables to range only
over S0 and those situations accessible from S0. It is neces-

4Here sorts or types are simply one place predicates. But com-
monly ∀s:SIT ϕ is used an abbreviation for ∀s SIT(s) → ϕ

5For expository purposes we speak informally of a proposition
being true in a situation rather than saying that the situation is in
the relation denoted by the predicate symbol P.

6Note that the the justification is needed for the agent to know
a proposition. In (Scherl and Levesque 2003), anything true in all
accessible worlds is known.

sary to stipulate that:

INIT(S0)
∀s, s1INIT(s1) → (K(s, s1) → INIT(s))
∀s, s1¬INIT(s1) → (K(s, s1) → ¬INIT(s))

INIT(s)→ ¬∃s′(s = DO(a, s′))

We want to require that the situation S0 is a member of the
sort INIT, everything K-accessible from an INIT situation
is also INIT, and that everything K-accessible from a situ-
ation that is not INIT is also not INIT. Also it is necessary
to require that none of the situations that result from the oc-
currence of an action are INIT. We also need to specify that
everything of type INIT is also of type SIT.

Given the decision that we are to use a particular modal
logic of knowledge, it is necessary to axiomatize the corre-
sponding restrictions that need to be placed on the K rela-
tion. These are listed below and are merely first-order rep-
resentations of the conditions on the accessibility relations
for the standard modal logics of knowledge discussed in the
literature (Hughes and Cresswell 1968; Kripke 1963; Chel-
las 1980; Bull and Segerberg 1984). All of these modal log-
ics have corresponding justification logics (Artemov 2008;
Artemov and Fitting 2012). The reflexive restriction is al-
ways added as we want a modal logic of knowledge. Some
subset of the other restrictions are then added to semantically
define a particular modal logic7.

Reflexive ∀s1:INIT K(s1, s1)

Euclidean ∀s1:INIT, s2:INIT, s3:INIT
K(s2, s1) ∧K(s3, s1)→ K(s3, s2)

Symmetric ∀s1:INIT, s2:INIT K(s2, s1)→ K(s1, s2)

Transitive ∀s1:INIT, s2:INIT, s3:INIT
K(s2, s1) ∧K(s3, s2)→ K(s3, s1)

For clarity a sort JUST is used to specify which objects are
justifications. The letter t, possibly with subscripts, is used to
indicate that the variable ranges over justifications, at times
without explicit indication of the sort. It is also necessary to
distinguish between those justifications that are handled by
successor state axioms and those that are asserted to hold in
every situation. The justifications handled by successor state
axioms are of type BASIC. Both of these will be explained
shortly. We also need a sort FORM to range over formulas
of propositional logic. Variables X and Y are used to range
over formulas without explicit use of the sort predicate.

We need the following to handle the application axiom

∀t:JUST ∀a:JUST ∀s1:SIT E(a,X → Y, s1)
∧ E(t,X, s1)

→ E(a · t, Y, s1)
(9)

and the following for the sum axiom.

∀t:JUST a:JUST ∀s1:SIT E(a,X, s1) ∨ E(t,X, s1)
→ E(a+ t,X, s1)

(10)

7As in (Scherl and Levesque 2003) it can be shown that these
properties persist through all successor situations.



Additionally, for every t :X ∈ CS, we need to have:

∀s:SIT E(t,X, s) (11)

The axiomatization needs to specify that the justifications in-
troduced as part of the constant specification are not BASIC
as are those that are formed by the operators + and · (even
if the arguments are of type BASIC).

Adding Ordinary Actions
Now the language includes more terms describing situa-
tions. In addition to S0, there is the DO function along with
the presence of actions in the language. More situations are
added to the model described earlier. The function denoted
by DO maps the initial set of situations to these other situa-
tions. (These in turn are mapped to yet other situations, and
so on). These situations intuitively represent the occurrence
of actions. The situations S1, S2, and S3 are mapped by
DO and the action terms MOVE, PICKUP, or DROP to vari-
ous other situations. The question is what is the K relation
between these situations. Our axiomatization of the K rela-
tion places constraints on the K relation in the models. We
first cover the simpler case of non-knowledge-producing ac-
tions and then discuss knowledge-producing actions.

For non-knowledge-producing actions (e.g. DROP(x)),
the specification is as follows:

K(s′′, DO(DROP(x), s)) ≡
∃s′ (POSS(DROP(x), s′) ∧ K(s′, s)∧
s′′ = DO(DROP(x), s′))

(12)

The idea here is that as far as the agent at world s knows,
he could be in any of the worlds s′ such that K(s′, s). At
DO(DROP(x), s) as far as the agent knows, he can be in
any of the worlds DO(DROP(x), s′) for any s′ such that both
K(s′, s) and POSS(DROP(x), s′) hold. So the only change in
knowledge (given only 12) that occurs in moving from s to
DO(DROP(x), s) is the knowledge that the action DROP has
been performed.

To continue our example of the initial arrangement of sit-
uations and the fluents P and Q, we imagine that an action
named DROP makes P false, but does not change the truth
value of Q. We have the following successor state axioms:

P(DO(a, s)) ≡ a 6= DROP ∧ P(s) (13)

Q(DO(a, s)) ≡ Q(s) (14)
We now have additional situations resulting from the DO
function applied to DROP and the successor state axiom
for K fully specifies the K relation between these situa-
tions. Here we see the situation do(drop,S1), denoted
by DO(DROP, S0), which represents the result of perform-
ing a drop action in the situation denoted by S0. Our
axiomatization requires that this situation be K related
only to the situations do(drop,S1), do(drop,S2) and
do(drop,S3).

The DROP action does not affect the truth of Q, but
makes P false. So, we see that proposition P is false in each
of do(drop,S1), do(drop,S2) and do(drop,S3),
while proposition Q is true in do(drop,S1) and
do(drop,S3), but is false in do(drop,S2). Therefore

in do(drop,S1) the fluent ¬P holds in all K accessible
situations, but this is not the case for the fluent Q.

We need a successor state axiom8 for E. Corresponding
to each successor state axiom of the form given in (7), there
must be

∀t:BASIC E(t,X, DO(a, s)) ≡
(E(t,X, s) ∧X 6= P ∧ X 6= ¬P ) ∨

((t = MKJUST(DO(a, s)) ∧
((γ+F (a, s) ∨ (F(s) ∧ ¬γ−F (a, s))) ∧

X = P )
∨

((γ−F (a, s) ∨ (¬F(s) ∧ ¬γ+F (a, s))) ∧
(X = ¬P )))

(15)

The axiomatization needs to specify that all justifications
formed from MKJUST are of type BASIC.

To return to our running axiomatization, we have

∀t:BASIC E(t,X, DO(a, s)) ≡
(E(t,X, s) ∧X 6= P ) ∨

(X = ¬P ∧ a = DROP ∧
t = MKJUST(DO(DROP(x), s)))

(16)

The following two sentences hold in this model:
Knows(MKJUST(DO(DROP(x), s)),¬P, DO(DROP, S0))
and ∀t ¬Knows(t,Q, DO(DROP, S0)). The agent’s knowl-
edge of Q has remained the same, and the knowledge of P
is a result of the knowledge of P in the previous situation
along with the knowledge of the effect of the action DROP.

Adding Knowledge-Producing Actions
Now consider the simple case of a knowledge-producing ac-
tion SENSEQ that determines whether or not the fluent Q is
true (following Moore (1980; 1985)). There may also be or-
dinary actions, which are not knowledge-producing.

We imagine that the action has an associated sensing re-
sult function. This result is “YES” if “Q” is true and “NO”
otherwise. The symbols are given in quotes to indicate that
they are not fluents. We axiomatize the sensing result as fol-
lows:

SR(SENSEQ, s) = r ≡ (r = “YES” ∧ Q(s))
∨ (r = “NO” ∧ ¬Q(s))

(17)

The question that we need to consider is what situations are
K accessible from DO(SENSEQ, s0).

K(s′′, DO(SENSEQ, s)) ≡
∃s′ (POSS(SENSEQ, s

′) ∧ K(s′, s)∧
s′′ = DO(SENSEQ, s

′)∧
SR(SENSEQ, s) = SR(SENSEQ, s

′))

(18)

Again, as far as the agent at world s knows, he could
be in any of the worlds s′ such that K(s′, s) holds. At
DO(SENSEQ, s) as far as the agent knows, he can be in
any of the worlds DO(SENSEQ, s

′) such that K(s′, s) and

8Here MKJUST is a gensym like function that creates a justifi-
cation out of the action that has occurred. The intuition is that the
occurrence of the action is the justification for the knowledge of
the changes that are caused by the action.



POSS(SENSEQ, s
′) hold by (18), and also Q(s) ≡ Q(s′)

by the combination of (17) and (18) holds. The idea here
is that in moving from s to DO(SENSEQ, s), the agent not
only knows that the action SENSEQ has been performed
(since every accessible situation results from the DO func-
tion and the SENSEQ action), but also the truth value of the
predicate Q. Observe that the successor state axiom for Q
(sentence 14) guarantees that Q is true at DO(SENSEQ, s)
if and only if Q is true at s, and similarly for s′ and
DO(SENSEQ, s

′). Therefore, Q has the same truth value
in all worlds s′′ such that K(s′′, DO(SENSEQ, s)), and so
Kwhether(Q, DO(SENSEQ, s)) is true.

To return to our running example, which is the illustration
of the result of a SENSEQ action, note that the only situa-
tions accessible via the K relation from do(sense,S1)
(denoted by DO( SENSEQ, s0)) are do(sense, S1) and
do(sense,S3). The situation do(sense,S2) is not K
accessible. Therefore Knows(t, P, DO(SENSEQ, S0)) is true
as it was before the action was executed, but also now
Knows(t′,Q, DO(SENSEQ, S0)) is true where t′ is a new jus-
tification as introduced in the successor state axiom for E
given below. The knowledge of the agent being modeled has
increased.

In general, there may be many knowledge-producing ac-
tions, as well as many ordinary actions. To characterize all
of these, we have a function SR (for sensing result), and for
each action α, a sensing-result axiom of the form:

SR(α(~x), s) = r ≡ φα(~x, r, s) (19)
For ordinary actions, the result is always the same, with the
specific result not being significant. For example, we could
have:

SR(PICKUP(x), s) = r ≡ r = “OK” (20)
The successor state axiom for K is as follows:

Successor State Axiom for K
K(s′′, DO(a, s)) ≡

(∃ s′ s′′ = DO(a, s′)
∧ K(s′, s) ∧ POSS(a, s′)
∧ SR(a, s) = SR(a, s′))

(21)

The relation K at a particular situation DO(a, s) is com-
pletely determined by the relation at s and the action a.

We need a successor state axiom for E and the sensing
action.
∀t:BASIC E(t,X, DO(SENSEQ)) ≡

(E(t,X, s) ∧X 6= Q ∧X 6= ¬Q)∨
(((X = Q ∧ SR(SENSEQ, s) = “YES”)∨
(X = ¬Q ∧ SR(SENSEQ, s) = “YES”))
∧ t = MKJUST(DO(DROP(x), s)))

(22)

For every sensing-result axiom of the form (19) we need an
axiom of the form (22). The axiomatization also needs to
specify that all justifications formed from MKJUST are of
type BASIC.

Example
Consider the red barn example mentioned earlier9. We have
two sensing actions; SENSEB∧R and SENSEB . The first rep-

9Here the example follows (Artemov 2008; Artemov and Fit-
ting 2012).

resents the action of sensing whether there is a red barn and
the second is the sensing of whether there is a barn. Note that
by the problem description only the first is a causal justifica-
tion for knowledge. This is meta-information, not available
to the agent.

The sensing result axioms are as follows:

SR(SENSEB∧R, s) = r ≡
(r = “YES” ∧ (RED(s) ∧ BARN(s))
∨ (r = “NO” ∧ ¬(RED(s) ∧ BARN(s))

(23)

SR(SENSEB , s) = r ≡
(r = “YES” ∧ BARN(s))
∨ (r = “NO” ∧ ¬BARN(s))

(24)

We assume that E has been axiomatized following the ap-
proach in the previous section. It is also necessary to add the
following: BARN(S0) and RED(S0). Additionally, we need
to add a propositional axiom (B ∧ R) → B to the constant
specification. So, it is justified by justification A.

∀s E(A, (B ∧R)→ B, s) (25)

The successor state axioms for BARN and RED need to be
added, but they are simple since there are no actions that
change these fluents. The successor state axioms for the
sensing action are of the form given in the previous section.

Now the axiomatization entails

Knows(MKJUST(DO(SENSEB , S0)),
BARN, DO(SENSEB , S0))

(26)

and

Knows((A · MKJUST(DO(SENSEB∧R, S0))),
BARN, DO(SENSEB∧R, S0))

(27)

By the meta-information given in the problem description
only the second is true knowledge. The formalism allows
the two justifications for the knowledge of barn to be dis-
tinguished, while the modal logic based approach of (Scherl
and Levesque 2003) does not allow them to be distinguished.

Summary
This paper has presented preliminary results on integrating
the justification logic model of knowledge into the situation
calculus with knowledge and knowledge producing actions.
The positive results of this work is that (as compared to the
situation calculus with a modal view of knowledge) one is
able to make a more fine-grained representation of the dif-
ferent ways an agent may have knowledge. Additionally, the
agent is not logically omniscient.

Some of the properties (Scherl and Levesque 2003) for
the situation calculus with knowledge carry over to the case
of justified knowledge. Space does not permit a full expo-
sition. But all of these properties show that actions only af-
fect knowledge in the appropriate way. Note that the prop-
erty (from (Scherl and Levesque 2003)) that agents know
the consequences of acquired knowledge does not hold as
knowledge of the consequences depends on having the jus-
tification that incorporates the reasoning involved.
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